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Abstract— The Pure Pursuit strategy is ubiquitous both in the
control literature but also in real-world implementation. In this
paper, we pose and solve a variant of Isaacs’ Two Cutters and
Fugitive Ship problem wherein the Pursuers’ strategy is fixed to
Pure Pursuit, thus making it an optimal control problem. The
Pursuers are faster than the Evader and are endowed with a
finite capture radius. All agents move with constant velocity
and can change heading instantaneously. Although capture
is inevitable, the Evader wishes to delay capture as long as
possible. The optimal trajectories cover the entire state space.
Regions corresponding to either solo capture or isochronous
(dual) capture are computed and both types of maximal time-
to-capture optimal trajectories are characterized.

I. INTRODUCTION

The scenario of pursuit and evasion is one that is rooted
in the natural interactions of predator and prey and has
applications to modern warfare. In this paper we consider
optimal evasion against two faster Pursuers who employ a
Pure Pursuit (PP) strategy – that is, the Pursuers’ instanta-
neous headings are always along their respective line-of-sight
(LOS) to the Evader’s position. The Evader wishes to extend
its life as long as possible before being captured by the
Pursuers. All three agents move with simple motion, i.e., with
constant velocity and no heading rate constraint. Capture
occurs when either one, or both, Pursuers come within range
dc of the Evader.

This scenario is a variation on the classical Two Cutters
and Fugitive Ship differential game originally posed by
Isaacs [1]. In the Two Cutters and Fugitive Ship differential
game, the Pursuers, acting as a team, wish to capture the
Evader in the shortest time possible, while the Evader, as
in this case, wishes to delay capture, thus making it a zero-
sum differential game. Isaacs’ treatment of the problem was
geometrical, based on the fact that all three agents’ saddle
point equilibrium strategies result in straight-line paths [1].
Additionally, Isaacs was focused on point capture, except in
the case of the closely related game of capture on a wall.
Isaacs rightfully noted that point capture in two or more
dimensions yields a degenerate terminal surface and demon-
strated how a proper terminal surface (e.g., when one endows
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the Pursuer(s) with a finite capture radius, dc) alleviates
issues like the perpetual dilemma [1]. The geometric solution
to the game was then validated in [2] by expressing the Value
function associated with the geometric solution analytically
and showing that it satisfies the Hamilton-Jacobi-Isaacs equa-
tion. Reference [3] sought to show the applicability of the
two-pursuer one-evader solution to scenarios with more than
two pursuers. In [4], the solution to the Game of Kind (i.e.,
whether capture by the first, or second, or both Pursuers
simultaneously) is given using a reduced state space. The
consequences of the Dispersal Surface in the game were
considered in [5]. The case of a finite capture radius was then
considered in [6], [7]. In the former, the solution is based on
a system of two nonlinear equations obtained by analytic
retrograde integration of the optimal dynamics; this solution
also covers the case of Pursuers with different speeds. The
latter provides a closed-form solution for the case where all
three agents have the same speed.

The biggest difference in this paper compared with the
aforementioned works is the fact that, rather than playing
the game, the Pursuers’ strategy is fixed (to PP). Although
differential game theory is considered to be a generalization
of optimal control [1], it is sometimes the case that fixing
the strategy of one of the sides can make the analysis
more challenging. For example, the solution to the one-on-
one pursuit-evasion differential game with simple motion,
which is for the Evader to run directly from the Pursuer
and for the Pursuer to run directly towards the Evader,
is almost trivial to show using differential game analysis.
However, if it is assumed that the Pursuer employs PP,
the optimal control analysis (which yields the same opti-
mal action for the Evader) is not trivial (c.f. [8]) due to
the nonlinearity of the dynamics induced by the Pursuers’
PP state-feedback strategy. This exercise of optimizing an
agent’s strategy against a particular opponent’s strategy, even
when the game scenario has been solved, is useful when
that opponent strategy is so widely used or well-known,
as is the case for PP. For example, in [8], a Target and
Defender cooperate against an Attacker who employs PP.
Similarly, [9], [10] consider the same scenario but with an
Attacker who employs Proportional Navigation (PN) (with
finite capture radius and point capture, respectively). The
scenario described in this paper was also considered in [11]
wherein it was assumed that the Pursuers employ either PP or
a fixed heading strategy. There, in the PP case, point capture
was considered and the optimal control problem was solved
using numerical pseudo-spectral (collocated) methods. Here,
we emphasize the analytical approach.

The obvious application for this scenario is an aerial



vehicle evading two incoming kinetic weapons (e.g. beyond
visual range missiles). There is some merit to this as two
missiles are regularly fired to increase the probability of kill
(see, e.g. [12]). However, the main interest in considering
this particular problem is to obtain a fundamental building
block to be used in bigger engagement scenarios. In this
respect, both [13] and [14] consider the game version of the
multiple-pursuer one-evader problem. In [14] the solution
to the two-pursuer one-evader game was used to construct
a robust Pursuer policy for the case of multiple Pursuers.
Reference [15] considers the multiple-pursuer, multiple-
evader scenario with fixed Pursuer strategies by utilizing the
results of sub-problems (e.g. two-on-one) in a task allocation
framework (c.f. also, [16]).

The main contributions of this paper are (1) the synthesis
of the optimal evasion control law against dual pure pursuit
with finite capture radius, (2) characterization of the disjoint
regions of the state space corresponding to the different
capture cases, (3) proofs regarding the set of terminal Evader
headings resulting in optimal dual capture, and (4) a back-
wards shooting numerical method for solving the Two-Point
Boundary Value Problem (TPBVP) arising where indirect
optimization is employed. The paper is organized as follows.
Section II contains the optimal control problem formulation
and Section III contains a derivation of the optimality condi-
tions. Section IV characterizes the solutions for both solo and
dual capture. Section VI concludes the paper with remarks
on the utility of this solution and identifies future research
directions.

II. PROBLEM FORMULATION

Let E = (xE , yE), P1 = (x1, y1), and P2 = (x2, y2)
denote the Evader, Pursuer 1, and Pursuer 2 and their
respective positions in the realistic plane R2. The agents’
velocities are denoted vE , and v1 = v2 = vP , respectively,
and vE < vP . In the realistic plane, the state xG ∈ R6

has six components corresponding to the coordinates of the
three agents in the Euclidean plane. For the remainder of the
paper, we utilize a relative state space x ∈ R6 based on the
Evader’s instantaneous position. The angle β is the angle of
the line EP1 w.r.t. the realistic x-axis. In later optimality
analysis, it will be shown that only the first three state
components influence the optimal solution: the Euclidean
distances between each Pursuer and the Evader, d1 and d2,
and the half-angle between the Pursuers w.r.t the Evader,
α. Fig. 1 shows these key state components (black) along
with the remaining state components (blue) used to relate
the relative state to the realistic (global) state. The following
equations relate the relative state to the global state,
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y1

x2
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x
y

x+ d1 cos(β)
y + d1 sin(β)

x+ d2 cos(β + 2α)
y + d2 sin(β + 2α)

 . (1)
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Fig. 1. Coordinate systems for the evasion scenario with main features
and relative states in black and global states in blue.

The dimensional dynamics (denoted with a bar) are given as,

f =



˙̄d1

˙̄d2

˙̄α
˙̄x
˙̄y
˙̄β


=



−vE cos (θ + ᾱ)− vP
−vE cos (θ − ᾱ)− vP

vE
2

(
1
d̄1

sin (θ + ᾱ)− 1
d̄2

sin (θ − ᾱ)
)

vE cos
(
β̄ + ᾱ+ θ

)
vE sin

(
β̄ + ᾱ+ θ

)
− vE
d̄1

sin (θ + ᾱ)


.

(2)

A. Non-Dimensionalization

Let the capture radius be denoted dc, and the ratio of
Evader to Pursuer speed be denoted µ = vE/vP < 1. It
is useful to consider the dimensionless form of the state
x and its dynamics f because, in doing so, we effectively
reduce the number of parameters from three (vE , vP , and
dc) to one (µ). Let non-dimensional distances be defined by
d = d̄/dc and non-dimensional time be defined by t = t̄/tc,
where tc = dc/vP is the amount of time taken by a Pursuer
to traverse the capture distance. Then the non-dimensional
distance dynamics are obtained from

˙̄z =
dz̄

dt̄
=

d(dcz)

d(tct)
=
dc
tc

dz

dt
=
dc
tc
ż

=⇒ ż =
tc
dc

˙̄z =
1

vP
˙̄z, (3)

for z = d1, d2, x, y and the non-dimensional angular dynam-
ics are obtained from

˙̄ψ =
dψ̄

dt̄
=

dψ

d(tct)
=

1

tc

dψ

dt
=

1

tc
ψ̇

=⇒ ψ̇ = tc
˙̄ψ =

dc
vP

˙̄ψ, (4)



for ψ = α, β. Substituting Eqs. (3) and (4) into Eq. (2) yields
the non-dimensional form of the dynamics,

f =


ḋ1

ḋ2

α̇
ẋ
ẏ

β̇

 =



−µ cos (θ + α)− 1
−µ cos (θ − α)− 1

µ
2

(
1
d1

sin (θ + α)− 1
d2

sin (θ − α)
)

µ cos (β + α+ θ)
µ sin (β + α+ θ)
− µ
d1

sin (θ + α)


. (5)

B. Problem Statement

The problem for the Evader is to select its heading control
θ(t), t ∈ [0, tf ] to maximize the time to capture. The cost
functional is,

J =

∫ tf

0

(−1) dt =

∫ tf

0

Ldt = −tf . (6)

Note that, due to the non-dimensionalization, the scenario
terminates (capture occurs) when either one or both Pursuers
come within a non-dimensional distance of 1 to the Evader.
The associated boundary condition is given as

φ (x0, tf ,xf ) =
(
d1f
− 1
) (
d2f
− 1
)

= 0, (7)

where x0 and xf are the initial and final states, respectively.
We now express the optimal control problem as

min
θ(t)

J, s.t. ẋ = f(x, θ), φ = 0. (8)

III. OPTIMALITY CONDITIONS

The Hamiltonian is given by,

H = λd1 (−µ cos (θ + α)− 1)

+ λd2 (−µ cos (θ − α)− 1)

+ λα
µ

2

(
1

d1
sin (θ + α)− 1

d2
sin (θ − α)

)
+ λxµ cos (β + α+ θ) + λyµ sin (β + α+ θ)

− λβ
µ

d1
sin (θ + α)− 1 (9)

where λ ≡
[
λd1 λd2 λα λx λy λβ

]>
are the adjoint

variables, the partial derivatives of the Value function. From
the first order optimality conditions, the optimal adjoint

dynamics are

λ̇d1 = −∂H

∂d1
=
λαµ sin (θ + α)

2d2
1

(10)

λ̇d2 = −∂H

∂d2
=
λαµ sin (θ − α)

2d2
2

(11)

λ̇α = −∂H

∂α
(12)

= −λd1µ sin (θ + α)− λd2µ sin (θ − α)

− λα
µ

2

(
1

d1
cos (θ + α) +

1

d2
cos (θ − α)

) (13)

λ̇x = −∂H

∂x
= 0 (14)

λ̇y = −∂H

∂y
= 0 (15)

λ̇β = −∂H

∂β
= 0. (16)

Because this is a free final time problem with a Lagrange
cost functional, the transversality condition gives

λ>(tf ) = ν
∂φ

∂xf

= ν
[(
d2f
− 1
) (

d1f
− 1
)

0 0 0 0
] (17)

=⇒ λαf
= λxf

= λyf = λβf
= 0. (18)

Since the adjoint variables λx, λy , and λβ are zero at final
time (Eq. (18)) and their derivatives are zero (Eqs. (14)–(16))
they are zero for all time and thus the states x, y, and β have
no effect on the optimality of the solution; only the d1, d2,
and α states are pertinent. Substituting λx = λy = λβ = 0
and using Ptolemy’s Trigonometric Identities to expand the
cosine/sine of sum terms in Eq. (9) yields,

H = −λd1µ (cos θ cosα− sin θ sinα)− λd1−
λd2µ (cos θ cosα+ sin θ sinα)− λd2+

λα
µ

2

(
1

d1
(sin θ cosα+ cos θ sinα)−

1

d2
(sin θ cosα− cos θ sinα)

)
− 1. (19)

Now define the following two quantities which are the
coefficients of the cos θ and sin θ terms,

ccos = µ

(
−λd1 cosα− λd2 cosα+

λα
2

sinα

(
1

d1
+

1

d2

)) (20)

csin = µ

(
λd1 sinα− λd2 sinα+

λα
2

cosα

(
1

d1
− 1

d2

))
(21)

and substitute back into (19) and simplify to get,

H = ccos cos θ + csin sin θ − λd1 − λd2 − 1. (22)

From Pontryagin’s Minimum Principle (PMP), then, the
optimal heading is given by θ∗ = arg minθ H . To minimize



H , we must have the vector
[
cos θ sin θ

]>
be antiparallel

to the vector
[
ccos csin

]
, giving,

cos θ∗ =
−ccos√
c2cos + c2sin

, sin θ∗ =
−csin√
c2cos + c2sin

. (23)

The Hamiltonian at final time is given by,

H (tf ) = −ν ∂φ
∂tf

= 0. (24)

Since H is not an explicit function of time, we have also
that H (t) = 0, ∀t ∈ [0, tf ].

IV. SOLUTION CHARACTERIZATION

We are interested in both solo and dual capture. Eq. (7) is
satisfied for all three terminal scenarios: both the solo capture
cases (i.e., d1f

> 1 and d2f
= 1, or vice versa) as well as

the dual capture case (d1f
= d2f

= 1). We will develop
optimal solutions for each of these cases in the following
subsections.

A. Solo Capture

The first case is solo capture where d1f
= 1 and d2f

> 1,
or d1f

> 1 and d2f
= 1.

Lemma 1 (Solo capture trajectories). The optimal control
resulting in solo capture by P1 is θ∗(t) = π − α(t), ∀t ∈
[0, tf ], and for solo capture by P2 is θ∗(t) = π + α(t),
∀t ∈ [0, tf ].

Proof. Consider the second case: solo capture by P2, which
entails d2f

= 1 and d1f
> 1. From Eq. (17), λd1f = 0,

λd2f = ν
(
d1f
− 1
)
, and λαf

= 0. Substituting these
terminal adjoint values into Eqs. (20) and (21) gives,

ccos = −µν(d1f
− 1) cosαf , csin = −µν(d1f

− 1) sinαf .

Substituting these values into the optimal control Eq. (23)
gives,

cos θ∗f = sign(ν) cosαf , sin θ∗f = sign(ν) sinαf .

If sign(ν) = 1 then θ∗f = αf , which implies the E heads
directly towards P2, which is clearly suboptimal. Instead, if
sign(ν) = −1 then θ∗f = π+αf , implying E heads directly
away from P2. Substituting this terminal Evader heading into
the adjoint dynamics Eqs. (10)–(13) gives,

λ̇d1f = 0, λ̇d2f = 0, λ̇αf
= 0,

which implies that the optimal adjoint values are constant
over the trajectory. Then, from the above analysis, the
condition θ∗ = π+α holds for all t ∈ [0, tf ]. By symmetry,
the result θ∗ = π − α applies for solo capture by P1.

Lemma 2 (Solo capture trajectory shape). In the case of solo
capture, the Evader’s and capturing Pursuer’s trajectories
are straight lines in the realistic plane.

Proof. Without loss of generality, consider solo capture by
P1. From Lemma 1 the Evader’s optimal control is θ∗(t) =
π−α(t). The Evader’s heading in the realistic plane is given
by Θ = β +α+ θ. Substituting the optimal control in gives

Θ = β+π. The rate of change of the global Evader heading
is Θ̇ = β̇. From Eq. (5) β̇ ∝ sin (θ + α). Substituting the
optimal control in makes β̇ = 0, thereby making Θ̇ = 0.
Thus the Evader’s heading in the realistic plane is constant,
implying a straight-line path. The Evader’s heading lies along
the line of sight P1E, and thus P1’s path is also straight.

Remark. Note this is also the solution to the single-Pursuer
single-Evader optimal control problem (c.f. [8]), and so the
presence of the second Pursuer did not affect the optimal
trajectories.

Lemma 3 (Closer Pursuer). Optimal solo capture is always
executed by the Pursuer who began closer to the Evader.

Proof. Without loss of generality, consider solo capture by
P1. From Lemma 1 the Evader’s optimal control is θ∗(t) =
π − α(t). Therefore, from Eq. (5) and µ < 1, we have 0 >
ḋ1(t) > ḋ2(t), ∀t ∈ [0, tf ]. Since solo capture by P1 entails
d1f

= 1 < d2f
it must be the case that d2(t) > d1(t),

∀t ∈ [0, tf ].

There may be initial conditions for which optimal solo
capture trajectories do not exist. For example, if E flees from
whichever P is closer at initial time (following Lemmas 1
and 3) and ends up being captured by the other P , then
optimal solo capture does not exist. It may also be the case
that the optimal solo capture trajectory exists but an optimal
dual capture trajectory exists.

Lemma 4. If, for a particular initial condition, both solo
capture and dual capture trajectories exist and satisfy all
of the optimality conditions, the solo capture trajectory is
uniquely optimal.

Proof. From the definition of φ in (7) the dual capture
candidate solution satisfies all of the optimality conditions
for solo capture. However, Lemma 1 specifies the optimal
control for solo capture (θ∗ = π − α for P1 or θ∗ = π + α
for P2). Any other control action would result in a smaller tf
compared to the solo capture candidate solution. Therefore,
the solo capture solution is optimal.

B. Dual Capture

In the case of dual capture both d1f
, d2f

= 1. However,
if these terminal distances are substituted into Eq. (17)
then λd1f = λd2f = 0. Substituting these values for the
terminal distance adjoints (along with all of the other known
terminal adjoints) gives H (tf ) = −1 which contradicts
Eq. (24), which says that H (tf ) = 0. Dual capture, thus,
exhibits a singularity, which is also evident by the fact
that the terminal surface corresponding to dual capture,
{d1, d2, α | d1 = d2 = 1}, is a line ∈ R1. Isaacs states [1]
that a non-degenerate terminal surface be of dimension one
less than the dimension of the state space. The consequence,
here, is that many different trajectories terminate at the same
point on the dual capture termination line, even for the same
terminal α. In order to proceed, we consider the limiting
Evader heading, θ∗(t), t → tf and its relationship to the



limiting adjoint values using a procedure described in [6]:

tan θ∗(tf ) = lim
t→tf

tan θ∗ = lim
t→tf

−csin
−ccos

= lim
t→tf

sinαf

(
λd2f − λd1f

)
cosαf

(
λd2f + λd1f

) .
Rearranging this expression for the adjoint variables yields

κ ≡
λd2f
λd1f

=
tanαf + tan θ∗f
tanαf − tan θ∗f

. (25)

Substituting the relation (25), along with (18) into Eqs. (9)
and (24) and solving for the terminal distance adjoints yields,

λd1f =
1

−µ cos (θf + αf )− 1 + κ (−µ cos (θf − αf )− 1)
(26)

or,

λd2f =
1

1
κ (−µ cos (θf + αf )− 1)− µ cos (θf − αf )− 1

.

(27)

Lemma 5. At θf = π ± α the dual capture solution is
equivalent to a solo capture solution with the non-capturing
Pursuer’s terminal distance approaching 1.

Proof. From Eq. (25), we have κ = 0 when θf = π − α
and κ = ∞ when θf = π + α which imply λd1f 6= 0 and
λd2f = 0, or λd1f = 0 and λd2f 6= 0, respectively. Thus,
when one of the terminal distance adjoints is zero and the
other is non-zero, then from the analysis in Lemma 1 the
optimal control is θ∗(t) = π±α(t) over the whole trajectory.
Therefore, the trajectories are identical to the solo capture
case wherein the non-capturing Pursuer’s terminal distance
approaches 1.

Proposition 1 (Optimal θf for dual capture). The range
θf ∈ (π − α, π + α) produces globally optimal trajectories,
and the trajectories produced by θf /∈ (π − α, π + α) are
suboptimal.

Proof. From Eq. (25) whenever θf /∈ [π − αf , π + αf ] the
terminal adjoint ratio κ < 0. This implies that the terminal
distance adjoints, λd1f and λd2f , have different signs; thus
one of either λd1f > 0 or λd2f > 0. Suppose, without loss of
generality that λd1f > 0. Equation (18) states that λαf

= 0
– based on the optimal adjoint dynamics, Eq. (10), λd1 is not
changing at final time. Thus λd1 > 0 for some nonzero time
leading up to final time due to the smoothness of Eqs. (10)-
(13). The adjoint variable λd1 ≡ ∂V

∂d1
where V = minθ(t) J

is the Value function. Thus if λd1 > 0 the Value increases
as distance from P1 increases. Since the cost functional is
the negative of final time, increasing the distance from P1

is a disadvantage to the E, in this case. Contrariwise, when
θf ∈ [π − αf , π + αf ] for dual capture, and in the single
capture case, λd1 , λd2 ≤ 0∀t. Thus in the latter, optimal,
cases, increasing distance from a Pursuer reduces the Value,
which is advantageous for the E. In the absence of turning-
rate constraints, increasing distance from a Pursuer (whilst

keeping the other distance constant) should always benefit
E. Consequently, dual capture with θf /∈ [π − αf , π + αf ]
must be suboptimal.

Remark. The terminal Evader headings θf ∈ (αf , π − αf )∪
(π + αf , 2π − αf ), although suboptimal for this scenario
(i.e., when both solo and dual capture are possible), are
optimal for a scenario in which only dual capture is de-
sired. Suppose E is defending some other target against
the Pursuers and, after interception, is destroyed. In that
scenario, the Evader wishes to collide with the two Pursuers
simultaneously.

αf

θf

1 1

E

P1 P2

Optimal dual capture
Suboptimal

Fig. 2. Optimality of the terminal Evader heading sectors.

Fig. 2 summarizes Proposition 1, showing the sectors of
θf for optimal dual capture (green), and where dual capture
is suboptimal (red).

Lemma 6 (Symmetric dual capture). For initial conditions
with d1 = d2, the optimal control is θ(t) = π, ∀t ∈ [0, tf ],
E’s trajectory is straight in the realistic plane, and the
scenario terminates in dual capture.

Proof. Suppose
(
d1f

, d2f
, αf

)
= (1, 1, αf ) and θf = π.

From Eq. (25) κ = 1 and so λd1f = λd2f . Substituting
into Eq. (13) with λαf

= 0 (from Eq. (17)) gives λ̇αf
= 0

which implies that λ̇d1 = λ̇d2 = λ̇α = 0. So λd1 = λd2 ,
∀t ∈ [0, tf ]. From Eqs. (20)–(23), then, θ∗(t) = π, ∀t ∈
[0, tf ]. Also, Eq. (5) implies d1(t) = d2(t), ∀t ∈ [0, tf ] as a
result of this control. Thus any point that starts with d1 = d2

can be reached (retrogressively) from such a trajectory. The
global Evader heading Θ = β + α + θ thus becomes
Θ = β + α + π. Its time rate of change is Θ̇ = β̇ + α̇,
which, from Eq. (5), gives Θ̇ = 0 since d1 = d2 and θ = π
along the trajectory.

Suppose the initial state is s.t. dual capture is optimal. If
d1 = d2, then Lemma 6 applies and the Evader’s optimal
control is θ∗(t) = π. In the general case where d1 6= d2,
however, the optimal control can only be obtained by solving
the TPBVP:

θ∗f , α
∗
f , t

∗
f = arg min

θf ,αf ,tf

∥∥∥∥∥∥
d10 − d1(0; θf , αf , tf )
d20 − d2(0; θf , αf , tf )
α0 − α(0; θf , αf , tf )

∥∥∥∥∥∥ , (28)

where θf ∈ [π − αf , π + αf ] and (d10
, d20

, α0) are obtained
using Eq. (1), based on the initial Cartesian coordinates of
the three agents. Given θf , the terminal adjoint values are



obtained by Eqs. (25)–(27). The quantities x(0; θf , αf , tf )
are obtained by integrating Eqs. (5) and (10)–(13) backwards
from tf to 0. The trajectory obtained is then converted to the
global coordinates via Eq. (1) and then shifted and rotated
to match the original global configuration. This process is
repeated in a backwards shooting numerical solution scheme
– NLopt is used with the COBYLA (Constrained Optimiza-
tion by Linear Approximation) solver to solve Eq. (28) based
on an initial guess [17], [18]. With the solution to Eq. (28)
in hand, the Evader may compute θ(t), the optimal control
along every point in the trajectory, from Eq. (23).

C. Full Solution

Based on the solution characteristics established above, the
state space C ≡

{
(d1, d2, α) | d1, d2 ≥ 1 and 0 < α < π

2

}
is partitioned into three regions corresponding to the different
terminal scenarios:

C = ∪


R1,

{
(d1, d2, α) | d1f

= 1, d2f
> 1
}

R2,
{

(d1, d2, α) | d1f
> 1, d2f

= 1
}

R1,2,
{

(d1, d2, α) | d1f
= 1, d2f

= 1
} , (29)

with the following control modes

θ∗(t) =


π − α(t), (d1, d2, α) ∈ R1

π + α(t), (d1, d2, α) ∈ R2

solution to TPBVP, (d1, d2, α) ∈ R1,2

. (30)

Fig. 3 depicts this partitioning of C . The green trajectories
correspond to dual capture trajectories with θf = π−αf and
the red trajectories correspond to dual capture trajectories
with θf = π+αf , across the range of αf . All of the trajecto-
ries terminate on the line

{(
d1f

, d2f
, αf

)
| d1f

= d2f
= 1
}

.
Given a particular initial condition, the information in Fig. 3
is enough to determine the corresponding terminal scenario.
Note the two separating surfaces form a boat-hull shape in
which the black line forms the bottom and the trajectories
along α = 0 form the front. A more human-readable
representation is given in Fig. 4 wherein the initial Pursuer
positions are fixed and the Evader’s initial position is varied
over the realistic plane. The numbered blue points in Fig. 4
correspond to initial Evader positions for each of the example
simulations contained in the following section.

In lieu of storing some representation of the regions or
their partitioning surfaces to determine the optimal capture
scenario, Algorithm 1 contains a procedure for computing
the optimal control.

V. SIMULATIONS

In this section, four simulations are carried out, demon-
strating the solution characteristics described in the previous
section. Fig. 4 shows the Evader initial positions for each of
the simulations. The Pursuers’ initial positions are (±10, 0)
for all of the examples. Note that Figs. 3 and 4 are shown
for a speed ratio of µ = 0.8. All of the simulations contained
herein are based on the same speed ratio. Table I summarizes
the simulation parameters and identifies the unique feature
of each example.
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Fig. 3. A partitioning of the state space into regions associated with each
type of capture.
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Fig. 4. A representation of the partitioning of C in the realistic plane for
given Pursuer initial positions for various Evader initial positions.



Algorithm 1 Optimal Evasion Against Dual Pure Pursuit
Require: (d10

, d20
, α0)

if d1 = d2 then
θ(t)← π

else
i← arg min1,2 PE
Forward shoot assuming E flees from Pi until capture
if Pi captures then

θ(t)← π ∓ α(t) . depending on i = 1 or 2
else

θ(t)← solution of TPBVP . Eq. (28)
end if

end if

TABLE I
EXAMPLE SIMULATIONS PARAMETERS AND DESCRIPTION

# x y Description
1 -7 9 Solo capture by P1

2 -5.53 6.73 Limiting solo/dual capture
3 -4 5 General dual capture
4 0 5 Symmetric dual capture

For the first example, the Evader’s initial position is s.t. the
system state is in R1 and thus the scenario ends in solo
capture by P1. As proven in Lemma 2, the trajectories (in
the realistic plane) are straight for E and P1. Fig. 5 shows
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Fig. 5. Example 1: Solo capture by P1.

the trajectories for this example.
In the second example, the Evader’s initial position is

s.t. the system state lies on the border between R1 and R1,2.
This is the limiting case of solo/dual capture wherein the
Pursuer who is initially further away terminates at exactly
the capture distance, but the trajectories for P1 and E are
straight (as in solo capture). Lemma 5 proves this behavior.
Fig. 6 shows the trajectories for this example.

In the third example, the Evader’s initial position is s.t. the
system state lies in R1,2, thus the scenario terminates with
both Pursuers capturing the Evader simultaneously. These
trajectories were obtained via backwards shooting to the
specified initial conditions (c.f. Table I). Fig. 7 shows the
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Fig. 6. Example 2: Limiting solo/dual capture.
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Fig. 7. Example 3: General dual capture.

trajectories obtained for this example.
In the fourth example, the Evader’s initial position is

equidistant to the two Pursuers, thus satisfying the conditions
of Lemma 6. The resulting Evader trajectory is straight in the
realistic plane and the Pursuers’ trajectories are symmetric.
Fig. 8 shows the trajectories for this example.

VI. CONCLUSION

In this paper we solved the optimal control problem of
pursuit-evasion type wherein an Evader seeks to maximize
its life in the presence of two faster Pursuers using Pure
Pursuit who have a finite capture radius. The optimal control
was obtained via Pontryagin’s Minimum Principle and the
complete state space was filled with optimal trajectories.
Optimal trajectories terminating in an isochronous (dual)
capture by both Pursuers produce a singularity which was
rectified by analyzing the limiting Evader heading. A parti-
tioning of the state space was generated based off of the
solution characteristics separating into regions of capture
by P1 alone, by P2 alone, and by both simultaneously. In
the dual capture case, a two-point boundary value problem
was posed and a procedure, based on backwards shooting,
was described. Alternatively, for onboard implementation in
a feedback control sense, since the entire state space was



−20 −10 0 10 20
x

0

5

10

15

20

25

30

35
y

Example 4

E

P1

P2

Fig. 8. Example 4: Symmetric dual capture.

filled with optimal trajectories, one may sample the state
space to generate a lookup table for the Evader’s instanta-
neous heading. There are two likely research directions for
furthering and utilizing these results: (1) comparison (and
simulation) against the optimal game policies, wherein the
Pursuers seek to minimize the Evader’s life, and (2) using the
Value function from this problem to make task assignments
in larger scenarios involving many agents.
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“A geometric approach for the cooperative two-pursuer one-evader
differential game,” IFAC-PapersOnLine, vol. 50, pp. 15209–15214,
2017.

[3] M. Pachter, “Isaacs’ two-on-one pursuit evasion game,” in 18th In-
ternational Symposium on Dynamic Games and Applications (ISDG),
2018.

[4] M. Pachter, A. Von Moll, E. Garcia, D. Casbeer, and D. Milutinović,
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